.. _Mixed Integer and hierarchical Surrogates: Mixed integer surrogate ======================= To use a surrogate with mixed integer constraints, the user instantiates a ``MixedIntegerSurrogateModel`` with the given surrogate. The ``MixedIntegerSurrogateModel`` implements the ``SurrogateModel`` interface and decorates the given surrogate while respecting integer and categorical types. They are various surrogate models implemented that are described below. For Kriging models, several methods to construct the mixed categorical correlation kernel are implemented. As a consequence, the user can instantiate a ``MixedIntegerKrigingModel`` with the given kernel for Kriging. Currently, 4 methods (CR, GD, EHH and HH) are implemented that are described hereafter. Mixed Integer Surrogate with Continuous Relaxation (CR) ------------------------------------------------------- For categorical variables, as many x features are added as there are levels for the variables. These new dimensions have [0, 1] bounds and the max of these feature float values will correspond to the choice of one the enum value: this is the so-called "one-hot encoding". For instance, for a categorical variable (one feature of x) with three levels ["blue", "red", "green"], 3 continuous float features x0, x1, x2 are created. Thereafter, the value max(x0, x1, x2), for instance, x1, will give "red" as the value for the original categorical feature. Details can be found in [1]_ . Example of mixed integer Polynomial (QP) surrogate ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import QP from smt.applications.mixed_integer import MixedIntegerSurrogateModel from smt.utils.design_space import DesignSpace, IntegerVariable xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0]) # Specify the design space using the DesignSpace # class and various available variable types design_space = DesignSpace( [ IntegerVariable(0, 4), ] ) sm = MixedIntegerSurrogateModel(design_space=design_space, surrogate=QP()) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() :: ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0000150 Prediction time/pt. (sec) : 0.0000002 .. figure:: Mixed_Hier_surr_TestMixedInteger_run_mixed_integer_qp_example.png :scale: 80 % :align: center Mixed Integer Kriging with Gower Distance (GD) ---------------------------------------------- Another implemented method to tackle mixed integer with Kriging is using a basic mixed integer kernel based on the Gower distance between two points. When constructing the correlation kernel, the distance is redefined as :math:`\Delta= \Delta_{cont} + \Delta_{cat}`, with :math:`\Delta_{cont}` the continuous distance as usual and :math:`\Delta_ {cat}` the categorical distance defined as the number of categorical variables that differs from one point to another. For example, the Gower Distance between ``[1,'red', 'medium']`` and ``[1.2,'red', 'large']`` is :math:`\Delta= 0.2+ (0` ``'red'`` :math:`=` ``'red'`` :math:`+ 1` ``'medium'`` :math:`\neq` ``'large'`` ) :math:`=1.2`. With this distance, a mixed integer kernel can be build. Details can be found in [1]_ . Example of mixed integer Gower Distance model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG, MixIntKernelType from smt.applications.mixed_integer import ( MixedIntegerKrigingModel, ) from smt.utils.design_space import ( DesignSpace, CategoricalVariable, FloatVariable, ) xt1 = np.array([[0, 0.0], [0, 2.0], [0, 4.0]]) xt2 = np.array([[1, 0.0], [1, 2.0], [1, 3.0]]) xt3 = np.array([[2, 1.0], [2, 2.0], [2, 4.0]]) xt = np.concatenate((xt1, xt2, xt3), axis=0) xt[:, 1] = xt[:, 1].astype(np.float64) yt1 = np.array([0.0, 9.0, 16.0]) yt2 = np.array([0.0, -4, -13.0]) yt3 = np.array([-10, 3, 11.0]) yt = np.concatenate((yt1, yt2, yt3), axis=0) design_space = DesignSpace( [ CategoricalVariable(["Blue", "Red", "Green"]), FloatVariable(0, 4), ] ) # Surrogate sm = MixedIntegerKrigingModel( surrogate=KRG( design_space=design_space, categorical_kernel=MixIntKernelType.GOWER, theta0=[1e-1], corr="squar_exp", n_start=20, ), ) sm.set_training_values(xt, yt) sm.train() # DOE for validation n = 100 x_cat1 = [] x_cat2 = [] x_cat3 = [] for i in range(n): x_cat1.append(0) x_cat2.append(1) x_cat3.append(2) x_cont = np.linspace(0.0, 4.0, n) x1 = np.concatenate( (np.asarray(x_cat1).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x2 = np.concatenate( (np.asarray(x_cat2).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x3 = np.concatenate( (np.asarray(x_cat3).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) y1 = sm.predict_values(x1) y2 = sm.predict_values(x2) y3 = sm.predict_values(x3) # estimated variance s2_1 = sm.predict_variances(x1) s2_2 = sm.predict_variances(x2) s2_3 = sm.predict_variances(x3) fig, axs = plt.subplots(3, figsize=(8, 6)) axs[0].plot(xt1[:, 1].astype(np.float64), yt1, "o", linestyle="None") axs[0].plot(x_cont, y1, color="Blue") axs[0].fill_between( np.ravel(x_cont), np.ravel(y1 - 3 * np.sqrt(s2_1)), np.ravel(y1 + 3 * np.sqrt(s2_1)), color="lightgrey", ) axs[0].set_xlabel("x") axs[0].set_ylabel("y") axs[0].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[1].plot( xt2[:, 1].astype(np.float64), yt2, marker="o", color="r", linestyle="None" ) axs[1].plot(x_cont, y2, color="Red") axs[1].fill_between( np.ravel(x_cont), np.ravel(y2 - 3 * np.sqrt(s2_2)), np.ravel(y2 + 3 * np.sqrt(s2_2)), color="lightgrey", ) axs[1].set_xlabel("x") axs[1].set_ylabel("y") axs[1].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[2].plot( xt3[:, 1].astype(np.float64), yt3, marker="o", color="r", linestyle="None" ) axs[2].plot(x_cont, y3, color="Green") axs[2].fill_between( np.ravel(x_cont), np.ravel(y3 - 3 * np.sqrt(s2_3)), np.ravel(y3 + 3 * np.sqrt(s2_3)), color="lightgrey", ) axs[2].set_xlabel("x") axs[2].set_ylabel("y") axs[2].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) plt.tight_layout() plt.show() :: ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0029371 Prediction time/pt. (sec) : 0.0000294 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0028622 Prediction time/pt. (sec) : 0.0000286 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0028448 Prediction time/pt. (sec) : 0.0000284 .. figure:: Mixed_Hier_surr_TestMixedInteger_run_mixed_gower_example.png :scale: 80 % :align: center Mixed Integer Kriging with Compound Symmetry (CS) ------------------------------------------------- Compound Symmetry is similar to Gower Distance but allow to model negative correlations. Details can be found in [2]_ . Example of mixed integer Compound Symmetry model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG, MixIntKernelType from smt.applications.mixed_integer import ( MixedIntegerKrigingModel, ) from smt.utils.design_space import ( DesignSpace, CategoricalVariable, FloatVariable, ) xt1 = np.array([[0, 0.0], [0, 2.0], [0, 4.0]]) xt2 = np.array([[1, 0.0], [1, 2.0], [1, 3.0]]) xt3 = np.array([[2, 1.0], [2, 2.0], [2, 4.0]]) xt = np.concatenate((xt1, xt2, xt3), axis=0) xt[:, 1] = xt[:, 1].astype(np.float64) yt1 = np.array([0.0, 9.0, 16.0]) yt2 = np.array([0.0, -4, -13.0]) yt3 = np.array([-10, 3, 11.0]) yt = np.concatenate((yt1, yt2, yt3), axis=0) design_space = DesignSpace( [ CategoricalVariable(["Blue", "Red", "Green"]), FloatVariable(0, 4), ] ) # Surrogate sm = MixedIntegerKrigingModel( surrogate=KRG( design_space=design_space, categorical_kernel=MixIntKernelType.COMPOUND_SYMMETRY, theta0=[1e-1], corr="squar_exp", n_start=20, ), ) sm.set_training_values(xt, yt) sm.train() # DOE for validation n = 100 x_cat1 = [] x_cat2 = [] x_cat3 = [] for i in range(n): x_cat1.append(0) x_cat2.append(1) x_cat3.append(2) x_cont = np.linspace(0.0, 4.0, n) x1 = np.concatenate( (np.asarray(x_cat1).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x2 = np.concatenate( (np.asarray(x_cat2).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x3 = np.concatenate( (np.asarray(x_cat3).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) y1 = sm.predict_values(x1) y2 = sm.predict_values(x2) y3 = sm.predict_values(x3) # estimated variance s2_1 = sm.predict_variances(x1) s2_2 = sm.predict_variances(x2) s2_3 = sm.predict_variances(x3) fig, axs = plt.subplots(3, figsize=(8, 6)) axs[0].plot(xt1[:, 1].astype(np.float64), yt1, "o", linestyle="None") axs[0].plot(x_cont, y1, color="Blue") axs[0].fill_between( np.ravel(x_cont), np.ravel(y1 - 3 * np.sqrt(s2_1)), np.ravel(y1 + 3 * np.sqrt(s2_1)), color="lightgrey", ) axs[0].set_xlabel("x") axs[0].set_ylabel("y") axs[0].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[1].plot( xt2[:, 1].astype(np.float64), yt2, marker="o", color="r", linestyle="None" ) axs[1].plot(x_cont, y2, color="Red") axs[1].fill_between( np.ravel(x_cont), np.ravel(y2 - 3 * np.sqrt(s2_2)), np.ravel(y2 + 3 * np.sqrt(s2_2)), color="lightgrey", ) axs[1].set_xlabel("x") axs[1].set_ylabel("y") axs[1].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[2].plot( xt3[:, 1].astype(np.float64), yt3, marker="o", color="r", linestyle="None" ) axs[2].plot(x_cont, y3, color="Green") axs[2].fill_between( np.ravel(x_cont), np.ravel(y3 - 3 * np.sqrt(s2_3)), np.ravel(y3 + 3 * np.sqrt(s2_3)), color="lightgrey", ) axs[2].set_xlabel("x") axs[2].set_ylabel("y") axs[2].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) plt.tight_layout() plt.show() :: exception : 4-th leading minor of the array is not positive definite [ 3.28121902e+01 -1.19061651e+01 -1.19062304e+01 7.34202209e-04 -3.09582545e-04 -2.19341599e-04 3.49847394e-09 -1.67389467e-09 -7.15698170e-10] exception : 4-th leading minor of the array is not positive definite [ 9.09297095e+00 -4.69851668e-02 -4.69502417e-02 9.74106925e-04 -5.62905232e-06 -4.04511718e-06 2.47447277e-08 -1.26347080e-10 -6.20962350e-11] ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033650 Prediction time/pt. (sec) : 0.0000337 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033152 Prediction time/pt. (sec) : 0.0000332 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0032670 Prediction time/pt. (sec) : 0.0000327 .. figure:: Mixed_Hier_surr_TestMixedInteger_run_mixed_cs_example.png :scale: 80 % :align: center Mixed Integer Kriging with Homoscedastic Hypersphere (HH) --------------------------------------------------------- This surrogate model assumes that the correlation kernel between the levels of a given variable is a symmetric positive definite matrix. The latter matrix is estimated through an hypersphere parametrization depending on several hyperparameters. To finish with, the data correlation matrix is build as the product of the correlation matrices over the various variables. Details can be found in [1]_ . Note that this model is the only one to consider negative correlations between levels ("blue" can be correlated negatively to "red"). Example of mixed integer Homoscedastic Hypersphere model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG, MixIntKernelType from smt.applications.mixed_integer import MixedIntegerKrigingModel from smt.utils.design_space import ( DesignSpace, CategoricalVariable, FloatVariable, ) xt1 = np.array([[0, 0.0], [0, 2.0], [0, 4.0]]) xt2 = np.array([[1, 0.0], [1, 2.0], [1, 3.0]]) xt3 = np.array([[2, 1.0], [2, 2.0], [2, 4.0]]) xt = np.concatenate((xt1, xt2, xt3), axis=0) xt[:, 1] = xt[:, 1].astype(np.float64) yt1 = np.array([0.0, 9.0, 16.0]) yt2 = np.array([0.0, -4, -13.0]) yt3 = np.array([-10, 3, 11.0]) yt = np.concatenate((yt1, yt2, yt3), axis=0) design_space = DesignSpace( [ CategoricalVariable(["Blue", "Red", "Green"]), FloatVariable(0, 4), ] ) # Surrogate sm = MixedIntegerKrigingModel( surrogate=KRG( design_space=design_space, categorical_kernel=MixIntKernelType.HOMO_HSPHERE, theta0=[1e-1], corr="squar_exp", n_start=20, ), ) sm.set_training_values(xt, yt) sm.train() # DOE for validation n = 100 x_cat1 = [] x_cat2 = [] x_cat3 = [] for i in range(n): x_cat1.append(0) x_cat2.append(1) x_cat3.append(2) x_cont = np.linspace(0.0, 4.0, n) x1 = np.concatenate( (np.asarray(x_cat1).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x2 = np.concatenate( (np.asarray(x_cat2).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x3 = np.concatenate( (np.asarray(x_cat3).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) y1 = sm.predict_values(x1) y2 = sm.predict_values(x2) y3 = sm.predict_values(x3) # estimated variance s2_1 = sm.predict_variances(x1) s2_2 = sm.predict_variances(x2) s2_3 = sm.predict_variances(x3) fig, axs = plt.subplots(3, figsize=(8, 6)) axs[0].plot(xt1[:, 1].astype(np.float64), yt1, "o", linestyle="None") axs[0].plot(x_cont, y1, color="Blue") axs[0].fill_between( np.ravel(x_cont), np.ravel(y1 - 3 * np.sqrt(s2_1)), np.ravel(y1 + 3 * np.sqrt(s2_1)), color="lightgrey", ) axs[0].set_xlabel("x") axs[0].set_ylabel("y") axs[0].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[1].plot( xt2[:, 1].astype(np.float64), yt2, marker="o", color="r", linestyle="None" ) axs[1].plot(x_cont, y2, color="Red") axs[1].fill_between( np.ravel(x_cont), np.ravel(y2 - 3 * np.sqrt(s2_2)), np.ravel(y2 + 3 * np.sqrt(s2_2)), color="lightgrey", ) axs[1].set_xlabel("x") axs[1].set_ylabel("y") axs[1].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[2].plot( xt3[:, 1].astype(np.float64), yt3, marker="o", color="r", linestyle="None" ) axs[2].plot(x_cont, y3, color="Green") axs[2].fill_between( np.ravel(x_cont), np.ravel(y3 - 3 * np.sqrt(s2_3)), np.ravel(y3 + 3 * np.sqrt(s2_3)), color="lightgrey", ) axs[2].set_xlabel("x") axs[2].set_ylabel("y") axs[2].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) plt.tight_layout() plt.show() :: ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033951 Prediction time/pt. (sec) : 0.0000340 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033388 Prediction time/pt. (sec) : 0.0000334 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033410 Prediction time/pt. (sec) : 0.0000334 .. figure:: Mixed_Hier_surr_TestMixedInteger_run_mixed_homo_hyp_example.png :scale: 80 % :align: center Mixed Integer Kriging with Exponential Homoscedastic Hypersphere (EHH) ---------------------------------------------------------------------- This surrogate model also considers that the correlation kernel between the levels of a given variable is a symmetric positive definite matrix. The latter matrix is estimated through an hypersphere parametrization depending on several hyperparameters. Thereafter, an exponential kernel is applied to the matrix. To finish with, the data correlation matrix is build as the product of the correlation matrices over the various variables. Therefore, this model could not model negative correlation and only works with absolute exponential and Gaussian kernels. Details can be found in [1]_ . Example of mixed integer Exponential Homoscedastic Hypersphere model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG, MixIntKernelType from smt.applications.mixed_integer import MixedIntegerKrigingModel from smt.utils.design_space import ( DesignSpace, CategoricalVariable, FloatVariable, ) xt1 = np.array([[0, 0.0], [0, 2.0], [0, 4.0]]) xt2 = np.array([[1, 0.0], [1, 2.0], [1, 3.0]]) xt3 = np.array([[2, 1.0], [2, 2.0], [2, 4.0]]) xt = np.concatenate((xt1, xt2, xt3), axis=0) xt[:, 1] = xt[:, 1].astype(np.float64) yt1 = np.array([0.0, 9.0, 16.0]) yt2 = np.array([0.0, -4, -13.0]) yt3 = np.array([-10, 3, 11.0]) yt = np.concatenate((yt1, yt2, yt3), axis=0) design_space = DesignSpace( [ CategoricalVariable(["Blue", "Red", "Green"]), FloatVariable(0, 4), ] ) # Surrogate sm = MixedIntegerKrigingModel( surrogate=KRG( design_space=design_space, theta0=[1e-1], corr="squar_exp", n_start=20, categorical_kernel=MixIntKernelType.EXP_HOMO_HSPHERE, ), ) sm.set_training_values(xt, yt) sm.train() # DOE for validation n = 100 x_cat1 = [] x_cat2 = [] x_cat3 = [] for i in range(n): x_cat1.append(0) x_cat2.append(1) x_cat3.append(2) x_cont = np.linspace(0.0, 4.0, n) x1 = np.concatenate( (np.asarray(x_cat1).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x2 = np.concatenate( (np.asarray(x_cat2).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) x3 = np.concatenate( (np.asarray(x_cat3).reshape(-1, 1), x_cont.reshape(-1, 1)), axis=1 ) y1 = sm.predict_values(x1) y2 = sm.predict_values(x2) y3 = sm.predict_values(x3) # estimated variance s2_1 = sm.predict_variances(x1) s2_2 = sm.predict_variances(x2) s2_3 = sm.predict_variances(x3) fig, axs = plt.subplots(3, figsize=(8, 6)) axs[0].plot(xt1[:, 1].astype(np.float64), yt1, "o", linestyle="None") axs[0].plot(x_cont, y1, color="Blue") axs[0].fill_between( np.ravel(x_cont), np.ravel(y1 - 3 * np.sqrt(s2_1)), np.ravel(y1 + 3 * np.sqrt(s2_1)), color="lightgrey", ) axs[0].set_xlabel("x") axs[0].set_ylabel("y") axs[0].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[1].plot( xt2[:, 1].astype(np.float64), yt2, marker="o", color="r", linestyle="None" ) axs[1].plot(x_cont, y2, color="Red") axs[1].fill_between( np.ravel(x_cont), np.ravel(y2 - 3 * np.sqrt(s2_2)), np.ravel(y2 + 3 * np.sqrt(s2_2)), color="lightgrey", ) axs[1].set_xlabel("x") axs[1].set_ylabel("y") axs[1].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) axs[2].plot( xt3[:, 1].astype(np.float64), yt3, marker="o", color="r", linestyle="None" ) axs[2].plot(x_cont, y3, color="Green") axs[2].fill_between( np.ravel(x_cont), np.ravel(y3 - 3 * np.sqrt(s2_3)), np.ravel(y3 + 3 * np.sqrt(s2_3)), color="lightgrey", ) axs[2].set_xlabel("x") axs[2].set_ylabel("y") axs[2].legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="upper left", bbox_to_anchor=[0, 1], ) plt.tight_layout() plt.show() :: ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0034671 Prediction time/pt. (sec) : 0.0000347 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033689 Prediction time/pt. (sec) : 0.0000337 ___________________________________________________________________________ Evaluation # eval points. : 100 Predicting ... Predicting - done. Time (sec): 0.0033631 Prediction time/pt. (sec) : 0.0000336 .. figure:: Mixed_Hier_surr_TestMixedInteger_run_mixed_homo_gaussian_example.png :scale: 80 % :align: center Mixed Integer Kriging with hierarchical variables ------------------------------------------------- The ``DesignSpace`` class can be used to model design variable hierarchy: conditionally active design variables and value constraints. A ``MixedIntegerKrigingModel`` with both Hierarchical and Mixed-categorical variables can be build using this. Two kernels for hierarchical variables are available, namely ``Arc-Kernel`` and ``Alg-Kernel``. More details are given in the usage section. Example of mixed integer Kriging with hierarchical variables ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np from smt.utils.design_space import ( DesignSpace, CategoricalVariable, IntegerVariable, FloatVariable, ) from smt.applications.mixed_integer import ( MixedIntegerKrigingModel, MixedIntegerSamplingMethod, ) from smt.surrogate_models import MixIntKernelType, MixHrcKernelType, KRG from smt.sampling_methods import LHS def f_hv(X): import numpy as np def H(x1, x2, x3, x4, z3, z4, x5, cos_term): import numpy as np h = ( 53.3108 + 0.184901 * x1 - 5.02914 * x1**3 * 10 ** (-6) + 7.72522 * x1**z3 * 10 ** (-8) - 0.0870775 * x2 - 0.106959 * x3 + 7.98772 * x3**z4 * 10 ** (-6) + 0.00242482 * x4 + 1.32851 * x4**3 * 10 ** (-6) - 0.00146393 * x1 * x2 - 0.00301588 * x1 * x3 - 0.00272291 * x1 * x4 + 0.0017004 * x2 * x3 + 0.0038428 * x2 * x4 - 0.000198969 * x3 * x4 + 1.86025 * x1 * x2 * x3 * 10 ** (-5) - 1.88719 * x1 * x2 * x4 * 10 ** (-6) + 2.50923 * x1 * x3 * x4 * 10 ** (-5) - 5.62199 * x2 * x3 * x4 * 10 ** (-5) ) if cos_term: h += 5.0 * np.cos(2.0 * np.pi * (x5 / 100.0)) - 2.0 return h def f1(x1, x2, z1, z2, z3, z4, x5, cos_term): c1 = z2 == 0 c2 = z2 == 1 c3 = z2 == 2 c4 = z3 == 0 c5 = z3 == 1 c6 = z3 == 2 y = ( c4 * ( c1 * H(x1, x2, 20, 20, z3, z4, x5, cos_term) + c2 * H(x1, x2, 50, 20, z3, z4, x5, cos_term) + c3 * H(x1, x2, 80, 20, z3, z4, x5, cos_term) ) + c5 * ( c1 * H(x1, x2, 20, 50, z3, z4, x5, cos_term) + c2 * H(x1, x2, 50, 50, z3, z4, x5, cos_term) + c3 * H(x1, x2, 80, 50, z3, z4, x5, cos_term) ) + c6 * ( c1 * H(x1, x2, 20, 80, z3, z4, x5, cos_term) + c2 * H(x1, x2, 50, 80, z3, z4, x5, cos_term) + c3 * H(x1, x2, 80, 80, z3, z4, x5, cos_term) ) ) return y def f2(x1, x2, x3, z2, z3, z4, x5, cos_term): c1 = z2 == 0 c2 = z2 == 1 c3 = z2 == 2 y = ( c1 * H(x1, x2, x3, 20, z3, z4, x5, cos_term) + c2 * H(x1, x2, x3, 50, z3, z4, x5, cos_term) + c3 * H(x1, x2, x3, 80, z3, z4, x5, cos_term) ) return y def f3(x1, x2, x4, z1, z3, z4, x5, cos_term): c1 = z1 == 0 c2 = z1 == 1 c3 = z1 == 2 y = ( c1 * H(x1, x2, 20, x4, z3, z4, x5, cos_term) + c2 * H(x1, x2, 50, x4, z3, z4, x5, cos_term) + c3 * H(x1, x2, 80, x4, z3, z4, x5, cos_term) ) return y y = [] for x in X: if x[0] == 0: y.append( f1(x[2], x[3], x[7], x[8], x[9], x[10], x[6], cos_term=x[1]) ) elif x[0] == 1: y.append( f2(x[2], x[3], x[4], x[8], x[9], x[10], x[6], cos_term=x[1]) ) elif x[0] == 2: y.append( f3(x[2], x[3], x[5], x[7], x[9], x[10], x[6], cos_term=x[1]) ) elif x[0] == 3: y.append( H(x[2], x[3], x[4], x[5], x[9], x[10], x[6], cos_term=x[1]) ) return np.array(y) design_space = DesignSpace( [ CategoricalVariable(values=[0, 1, 2, 3]), # meta IntegerVariable(0, 1), # x1 FloatVariable(0, 100), # x2 FloatVariable(0, 100), FloatVariable(0, 100), FloatVariable(0, 100), FloatVariable(0, 100), IntegerVariable(0, 2), # x7 IntegerVariable(0, 2), IntegerVariable(0, 2), IntegerVariable(0, 2), ] ) # x4 is acting if meta == 1, 3 design_space.declare_decreed_var(decreed_var=4, meta_var=0, meta_value=[1, 3]) # x5 is acting if meta == 2, 3 design_space.declare_decreed_var(decreed_var=5, meta_var=0, meta_value=[2, 3]) # x7 is acting if meta == 0, 2 design_space.declare_decreed_var(decreed_var=7, meta_var=0, meta_value=[0, 2]) # x8 is acting if meta == 0, 1 design_space.declare_decreed_var(decreed_var=8, meta_var=0, meta_value=[0, 1]) # Sample from the design spaces, correctly considering hierarchy n_doe = 15 design_space.seed = 42 samp = MixedIntegerSamplingMethod( LHS, design_space, criterion="ese", random_state=design_space.seed ) Xt, Xt_is_acting = samp(n_doe, return_is_acting=True) Yt = f_hv(Xt) sm = MixedIntegerKrigingModel( surrogate=KRG( design_space=design_space, categorical_kernel=MixIntKernelType.HOMO_HSPHERE, hierarchical_kernel=MixHrcKernelType.ALG_KERNEL, # ALG or ARC theta0=[1e-2], corr="abs_exp", n_start=5, ), ) sm.set_training_values(Xt, Yt, is_acting=Xt_is_acting) sm.train() y_s = sm.predict_values(Xt)[:, 0] _pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt) y_sv = sm.predict_variances(Xt)[:, 0] _var_RMSE = np.linalg.norm(y_sv) / len(Yt) :: ___________________________________________________________________________ Evaluation # eval points. : 15 Predicting ... Predicting - done. Time (sec): 0.0029151 Prediction time/pt. (sec) : 0.0001943 References ---------- .. [1] Saves, P. and Diouane, Y. and Bartoli, N. and Lefebvre, T. and Morlier, J. (2022). A general square exponential kernel to handle mixed-categorical variables for Gaussian process. AIAA Aviation 2022 Forum. .. [2] Pelamatti, J. "Mixed-variable Bayesian optimization: application to aerospace system design", PhD thesis, Université de Lille, Lille, 2020.