Multi-Fidelity Kriging (MFK)

MFK is a multi-fidelity modeling method which uses an autoregressive model of order 1 (AR1).

\[y_\text{high}({\bf x})=\rho(x) \cdot y_\text{low}({\bf x}) + \delta({\bf x})\]

where \(\rho(x)\) is a scaling/correlation factor (constant, linear or quadratic) and \(\delta(\cdot)\) is a discrepancy function.

The additive AR1 formulation was first introduced by Kennedy and O’Hagan [1]. The implementation here follows the one proposed by Le Gratiet [2]. It offers the advantage of being recursive, easily extended to \(n\) levels of fidelity and offers better scaling for high numbers of samples. This method only uses nested sampling training points as described by Le Gratiet [2].

References

Usage

import numpy as np
import matplotlib.pyplot as plt
from smt.applications.mfk import MFK, NestedLHS

# low fidelity model
def lf_function(x):
    import numpy as np

    return (
        0.5 * ((x * 6 - 2) ** 2) * np.sin((x * 6 - 2) * 2)
        + (x - 0.5) * 10.0
        - 5
    )

# high fidelity model
def hf_function(x):
    import numpy as np

    return ((x * 6 - 2) ** 2) * np.sin((x * 6 - 2) * 2)

# Problem set up
xlimits = np.array([[0.0, 1.0]])
xdoes = NestedLHS(nlevel=2, xlimits=xlimits, random_state=0)
xt_c, xt_e = xdoes(7)

# Evaluate the HF and LF functions
yt_e = hf_function(xt_e)
yt_c = lf_function(xt_c)

sm = MFK(theta0=xt_e.shape[1] * [1.0])

# low-fidelity dataset names being integers from 0 to level-1
sm.set_training_values(xt_c, yt_c, name=0)
# high-fidelity dataset without name
sm.set_training_values(xt_e, yt_e)

# train the model
sm.train()

x = np.linspace(0, 1, 101, endpoint=True).reshape(-1, 1)

# query the outputs
y = sm.predict_values(x)
_mse = sm.predict_variances(x)
_derivs = sm.predict_derivatives(x, kx=0)

plt.figure()

plt.plot(x, hf_function(x), label="reference")
plt.plot(x, y, linestyle="-.", label="mean_gp")
plt.scatter(xt_e, yt_e, marker="o", color="k", label="HF doe")
plt.scatter(xt_c, yt_c, marker="*", color="g", label="LF doe")

plt.legend(loc=0)
plt.ylim(-10, 17)
plt.xlim(-0.1, 1.1)
plt.xlabel(r"$x$")
plt.ylabel(r"$y$")

plt.show()
___________________________________________________________________________

                                    MFK
___________________________________________________________________________

 Problem size

      # training points.        : 7

___________________________________________________________________________

 Training

   Training ...
   Training - done. Time (sec):  0.4344051
___________________________________________________________________________

 Evaluation

      # eval points. : 101

   Predicting ...
   Predicting - done. Time (sec):  0.0002229

   Prediction time/pt. (sec) :  0.0000022

___________________________________________________________________________

 Evaluation

      # eval points. : 101

   Predicting ...
   Predicting - done. Time (sec):  0.0001872

   Prediction time/pt. (sec) :  0.0000019
../../_images/mfk_TestMFK_run_mfk_example.png

Options

List of options

Option

Default

Acceptable values

Acceptable types

Description

print_global

True

None

[‘bool’]

Global print toggle. If False, all printing is suppressed

print_training

True

None

[‘bool’]

Whether to print training information

print_prediction

True

None

[‘bool’]

Whether to print prediction information

print_problem

True

None

[‘bool’]

Whether to print problem information

print_solver

True

None

[‘bool’]

Whether to print solver information

poly

constant

[‘constant’, ‘linear’, ‘quadratic’]

[‘str’]

Regression function type

corr

squar_exp

[‘pow_exp’, ‘abs_exp’, ‘squar_exp’, ‘act_exp’, ‘matern52’, ‘matern32’]

None

Correlation function type

pow_exp_power

1.9

None

[‘float’]

Power for the pow_exp kernel function (valid values in (0.0, 2.0]), This option is set automatically when corr option is squar, abs, or matern.

categorical_kernel

MixIntKernelType.CONT_RELAX

[<MixIntKernelType.CONT_RELAX: ‘CONT_RELAX’>, <MixIntKernelType.GOWER: ‘GOWER’>, <MixIntKernelType.EXP_HOMO_HSPHERE: ‘EXP_HOMO_HSPHERE’>, <MixIntKernelType.HOMO_HSPHERE: ‘HOMO_HSPHERE’>, <MixIntKernelType.COMPOUND_SYMMETRY: ‘COMPOUND_SYMMETRY’>]

None

The kernel to use for categorical inputs. Only for non continuous Kriging

hierarchical_kernel

MixHrcKernelType.ALG_KERNEL

[<MixHrcKernelType.ALG_KERNEL: ‘ALG_KERNEL’>, <MixHrcKernelType.ARC_KERNEL: ‘ARC_KERNEL’>]

None

The kernel to use for mixed hierarchical inputs. Only for non continuous Kriging

nugget

2.220446049250313e-14

None

[‘float’]

a jitter for numerical stability

theta0

[0.01]

None

[‘list’, ‘ndarray’]

Initial hyperparameters

theta_bounds

[1e-06, 20.0]

None

[‘list’, ‘ndarray’]

bounds for hyperparameters

hyper_opt

TNC

[‘Cobyla’, ‘TNC’]

[‘str’]

Optimiser for hyperparameters optimisation

eval_noise

False

[True, False]

[‘bool’]

noise evaluation flag

noise0

[0.0]

None

[‘list’, ‘ndarray’]

Initial noise hyperparameters

noise_bounds

[2.220446049250313e-14, 10000000000.0]

None

[‘list’, ‘ndarray’]

bounds for noise hyperparameters

use_het_noise

False

[True, False]

[‘bool’]

heteroscedastic noise evaluation flag

n_start

10

None

[‘int’]

number of optimizer runs (multistart method)

xlimits

None

None

[‘list’, ‘ndarray’]

definition of a design space of float (continuous) variables: array-like of size nx x 2 (lower, upper bounds)

design_space

None

None

[‘BaseDesignSpace’, ‘list’, ‘ndarray’]

definition of the (hierarchical) design space: use smt.utils.design_space.DesignSpace as the main API. Also accepts list of float variable bounds

random_state

41

None

[‘NoneType’, ‘int’, ‘RandomState’]

Numpy RandomState object or seed number which controls random draws for internal optim (set by default to get reproductibility)

rho_regr

constant

[‘constant’, ‘linear’, ‘quadratic’]

None

Regression function type for rho

optim_var

False

[True, False]

[‘bool’]

If True, the variance at HF samples is forced to zero

propagate_uncertainty

True

[True, False]

[‘bool’]

If True, the variance cotribution of lower fidelity levels are considered