Source code for smt.problems.problem

"""
Author: Dr. John T. Hwang <hwangjt@umich.edu>

This package is distributed under New BSD license.

Base class for benchmarking/test problems.
"""

from typing import Optional

import numpy as np

from smt.utils.checks import ensure_2d_array

from smt.design_space import (
    BaseDesignSpace,
    DesignSpace,
)
from smt.utils.options_dictionary import OptionsDictionary


[docs] class Problem:
[docs] def __init__(self, **kwargs): """ Constructor where values of options can be passed in. For the list of options, see the documentation for the problem being used. Parameters ---------- **kwargs : named arguments Set of options that can be optionally set; each option must have been declared. Examples -------- >>> from smt.problems import Sphere >>> prob = Sphere(ndim=3) """ self.options = OptionsDictionary() self.options.declare("ndim", 1, types=int) self.options.declare("return_complex", False, types=bool) self._initialize() self.options.update(kwargs) self.xlimits = np.zeros((self.options["ndim"], 2)) self._design_space = None self.eval_x = None self.eval_is_acting = None self._setup()
[docs] def _initialize(self) -> None: """ Implemented by problem to declare options (optional). Examples -------- self.options.declare('option_name', default_value, types=(bool, int), desc='description') """ pass
def _setup(self) -> None: pass
[docs] def _set_design_space(self, design_space: BaseDesignSpace): """ Set the design space definition (best is to use the smt.utils.design_space.DesignSpace class directly) of this problem from the _setup function. If used, there is no need to set xlimits. """ self._design_space = design_space self.options["ndim"] = len(design_space.design_variables) self.xlimits = design_space.get_num_bounds()
@property def design_space(self) -> BaseDesignSpace: """Gets the design space definitions as an instance of BaseDesignSpace""" if self._design_space is None: self._design_space = DesignSpace(self.xlimits) return self._design_space def sample(self, n): x, _ = self.design_space.sample_valid_x(n) return x
[docs] def __call__(self, x: np.ndarray, kx: Optional[int] = None) -> np.ndarray: """ Evaluate the function. The input vectors might be corrected if it is a hierarchical design space. You can get the corrected x and information about which variables are acting from: problem.eval_x and problem.eval_is_acting Parameters ---------- x : ndarray[n, nx] or ndarray[n] Evaluation points where n is the number of evaluation points. kx : int or None Index of derivative (0-based) to return values with respect to. None means return function value rather than derivative. Returns ------- ndarray[n, 1] Functions values if kx=None or derivative values if kx is an int. """ x = ensure_2d_array(x, "x") if x.shape[1] != self.options["ndim"]: raise ValueError( "The second dimension of x should be %i" % self.options["ndim"] ) if kx is not None: if not isinstance(kx, int) or kx < 0: raise TypeError("kx should be None or a non-negative int.") # Correct the design vector and get information about which design variables are active x_corr, self.eval_is_acting = self.design_space.correct_get_acting(x) self.eval_x = x_corr y = self._evaluate(x_corr, kx) if self.options["return_complex"]: return y else: return np.real(y)
[docs] def _evaluate(self, x: np.ndarray, kx: Optional[int] = None) -> np.ndarray: """ Implemented by surrogate models to evaluate the function. Parameters ---------- x : ndarray[n, nx] Evaluation points where n is the number of evaluation points. kx : int or None Index of derivative (0-based) to return values with respect to. None means return function value rather than derivative. Returns ------- ndarray[n, 1] Functions values if kx=None or derivative values if kx is an int. """ raise Exception("This problem has not been implemented correctly")