Least-squares approximation

The following description is taken from scikit-learn version 0.18.2 [1].

The Least Squares method fits a linear model with coefficients \({\bf \beta} = \left(\beta_0, \beta_1,\dotsc,\beta_{nx}\right)\) to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:

\[\min_\limits{{\bf \beta}}||{\bf X\beta-y}||_2^2,\]

where \({\bf X} = \left(1,{{\bf x}^{(1)}}^T,\dots,{{\bf x}^{(nt)}}^T\right)^T\) with dimensions (\(nt\times nx+1\)).

Usage

import matplotlib.pyplot as plt
import numpy as np

from smt.surrogate_models import LS

xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0])

sm = LS()
sm.set_training_values(xt, yt)
sm.train()

num = 100
x = np.linspace(0.0, 4.0, num)
y = sm.predict_values(x)

plt.plot(xt, yt, "o")
plt.plot(x, y)
plt.xlabel("x")
plt.ylabel("y")
plt.legend(["Training data", "Prediction"])
plt.show()
___________________________________________________________________________

                                    LS
___________________________________________________________________________

 Problem size

      # training points.        : 5

___________________________________________________________________________

 Training

   Training ...
   Training - done. Time (sec):  0.0000000
___________________________________________________________________________

 Evaluation

      # eval points. : 100

   Predicting ...
   Predicting - done. Time (sec):  0.0000000

   Prediction time/pt. (sec) :  0.0000000
../../_images/ls_Test_test_ls.png

Options

List of options

Option

Default

Acceptable values

Acceptable types

Description

print_global

True

None

[‘bool’]

Global print toggle. If False, all printing is suppressed

print_training

True

None

[‘bool’]

Whether to print training information

print_prediction

True

None

[‘bool’]

Whether to print prediction information

print_problem

True

None

[‘bool’]

Whether to print problem information

print_solver

True

None

[‘bool’]

Whether to print solver information

data_dir

None

None

[‘str’]

Directory for loading / saving cached data; None means do not save or load